- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Fang, Xiaozhen (1)
-
Guo, Wei (1)
-
Huang, Jianping (1)
-
Liu, Cheng (1)
-
Liu, Heping (1)
-
Pan, YuanYuan (1)
-
Zhu, Ren‐Guo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Surface moisture heterogeneity degrades temperature‐humidity (‐) similarity in the atmospheric surface layer, yet the underlying physical mechanisms driving this dissimilarity remain underexplored. This study employs large‐eddy simulations coupled with a land‐surface model to investigate ‐ similarity in the convective boundary layer (CBL) over surfaces with varying scales of surface moisture heterogeneity. Results reveal that as the heterogeneity scale increases, patch‐scale thermally induced circulations develop and interact with cellular turbulent organized structures, significantly altering scalar transport and turbulence dynamics. The patch‐scale thermally induced circulations enhance horizontal advection, modify the production and transport of scalar variances, and lead to a disproportionate increase in the standard deviations of temperature () and humidity (), accompanied by a reduction in ‐ covariance (). As a result, ‐ similarity is substantially reduced throughout the CBL. Spectral analysis reveals that ‐ dissimilarity is most strongly influenced by turbulent motions at scales corresponding to patch lengths. The findings offer insights into the role of surface heterogeneity in shaping scalar similarity in the CBL, with implications for land‐atmosphere interactions and parameterization in numerical models.more » « lessFree, publicly-accessible full text available June 28, 2026
An official website of the United States government
